Search results for " SIMULATIONS"

showing 10 items of 243 documents

Response of AGATA segmented HPGe detectors to gamma rays up to 15.1MeV

2013

WOS: 000314826000009

AGATA; Gamma-ray spectroscopy; Gamma-ray tracking; HPGe detectors; Pulse-shape and gamma-ray tracking algorithms; Semiconductor detector performance and simulationsNuclear and High Energy PhysicsPulse-shape and gamma-ray tracking algorithmsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSemiconductor detector performance and simulationsTracking (particle physics)01 natural sciencesNuclear physicsGamma-ray tracking0103 physical sciencesGamma spectroscopyddc:530Gamma-ray spectroscopyNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentInstrumentationNuclear ExperimentDetectors de radiacióPhysicsSpectrometer010308 nuclear & particles physicsDetectorHPGe detectorsGamma ray81V35Semiconductor detectorAGATAFísica nuclearHpge detectorAGATA
researchProduct

Multiphoton Absorption of Myoglobin Nitric-Oxide complex: Relaxation by D-NEMD of a Stationary State

2012

ABSTRACT: The photodissociation and geminate recombination of nitric oxide in myoglobin, under continuous illumination, is modeled computationally. The relaxation of the photon energy into the protein matrix is also considered in a single simulation scheme that mimics a complete experimental setup. The dynamic approach to non-equilibrium molecular dynamics is used, starting from a steady state, to compute its relaxation to equilibrium. Simulations are conducted for the native form of sperm whale myoglobin and for two other mutants, V68W and L29F, illustrating a fair diversity of spatial and temporal geminate recombination processes. Energy flow to the heme and immediate protein environment …

myoglobin molecular dynamics simulations non equilibriumThermal fluctuationsMolecular Dynamics SimulationNitric OxideArticleAbsorptionchemistry.chemical_compoundMolecular dynamicsComputational chemistryMaterials ChemistryPhysical and Theoretical ChemistryHemePhotonsSteady stateChemistryMyoglobinPhotodissociationTemperatureSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Recombinant ProteinsSurfaces Coatings and FilmsProtein Structure TertiaryMyoglobinChemical physicsMutationRelaxation (physics)Stationary stateProtein Binding
researchProduct

Semantically enriched informed environment for multi-agent simulation : application to simulation in 3D virtual environment

2014

This thesis focuses on multi-agent simulation applied to the simulation of individuals in virtual 3D buildings. To do this, our work suggests to capitalize on the experience gained in the field of semantic web ontologies and inference engines to facilitate the design and development of intelligent behavior for agents operating in virtual worlds. The goal is to provide to agents a generic approach to managing their representation of the world and reason about this representation. For this, the central problem is based on the definition of a decidable ontology modeling all of the knowledge contained in the virtual 3D environment to enrich semantically the environment of a multi-agent simulati…

Agents intelligents[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]Multi-agents based simulations[INFO.INFO-WB] Computer Science [cs]/WebOntology[INFO.INFO-WB]Computer Science [cs]/WebSmart agentsOntologieSmart environment[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]ReasonerTriplestoreRaisonneurEnvironnement intelligentWeb sémantiqueSemantic webSimulation multi-agents
researchProduct

Design of a reactor operating in supercritical water conditions using CFD simulations. Examples of synthesized nanomaterials

2011

International audience; Direct information about fluids under supercritical water conditions is unfeasible due to the engineering restrictions at high pressure and high temperature. Numerical investigations based on computational fluid dynamics (CFD) calculations are widely used in order to get extensive information on the fluid behavior, particularly to help the design of a new reactor. This paper presents the numerical investigations performed on an original supercritical water device, especially in the level of the reactor. CFD calculations allow to design and optimize the present reactor described in this study. Currently, this process produces some nanometric oxide powders in continuou…

Materials scienceCONTINUOUS HYDROTHERMAL SYNTHESISGeneral Chemical EngineeringNuclear engineeringOxideNanotechnology02 engineering and technologyComputational fluid dynamics010402 general chemistry7. Clean energy01 natural sciencesMIXERNanomaterialsCrystallinitychemistry.chemical_compoundNANOPOWDERSMETAL-OXIDE NANOPARTICLESNano-oxidesFluentPARTICLES[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringPhysical and Theoretical ChemistryHigh-resolution transmission electron microscopySupercritical waterNanomaterialsbusiness.industry[ SPI.GPROC ] Engineering Sciences [physics]/Chemical and Process Engineering021001 nanoscience & nanotechnologyCondensed Matter PhysicsCFD simulationsSupercritical fluid0104 chemical sciencesPowder synthesisNANOCRYSTALSchemistryScientific methodFluent0210 nano-technologybusiness
researchProduct

GPU accelerated Monte Carlo simulations of lattice spin models

2011

We consider Monte Carlo simulations of classical spin models of statistical mechanics using the massively parallel architecture provided by graphics processing units (GPUs). We discuss simulations of models with discrete and continuous variables, and using an array of algorithms ranging from single-spin flip Metropolis updates over cluster algorithms to multicanonical and Wang-Landau techniques to judge the scope and limitations of GPU accelerated computation in this field. For most simulations discussed, we find significant speed-ups by two to three orders of magnitude as compared to single-threaded CPU implementations.

cluster algorithmsStatistical Mechanics (cond-mat.stat-mech)Computer scienceComputationNumerical analysisspin modelsMonte Carlo methodHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesStatistical mechanicsGPU computingPhysics and Astronomy(all)Computational Physics (physics.comp-ph)generalized-ensemble simulationsMonte Carlo simulationsComputational scienceCUDAHigh Energy Physics - LatticeSpin modelGeneral-purpose computing on graphics processing unitsGraphicsPhysics - Computational PhysicsCondensed Matter - Statistical Mechanics
researchProduct

Electronic properties of carbon nanotubes under torsion

2012

A computationally-effective approach for calculating the electromechanical behavior of SWNTs and MWNTs of the dimensions used in nano-electronic devices has been developed. It is a mixed finite element-tight-binding code carefully designed to realize significant time saving in calculating deformation-induced changes in electrical transport properties of the nanotubes. The effect of the MWNT diameter and chirality on the conductance after mechanical deformation was investigated. In case of torsional deformation results revealed the conductance of MWNTs to depend strongly on the diameter, since bigger MWNTs reach much earlier the buckling load under torsion their electrical conductivity chang…

Materials scienceTorsion (mechanics)ConductanceNanotechnologyGeneral ChemistryCarbon nanotubelaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineZigzagBucklinglawElectrical resistivity and conductivitycarbon nanotubes Numerical simulations Electromechanical behaviorGeneral Materials ScienceComposite materialElectrical conductorElectronic properties
researchProduct

Noise delayed decay of unstable states: theory versus numerical simulations

2004

We study the noise delayed decay of unstable nonequilibrium states in nonlinear dynamical systems within the framework of the overdamped Brownian motion model. We give the exact expressions for the decay times of unstable states for polynomial potential profiles and obtain nonmonotonic behavior of the decay times as a function of the noise intensity for the unstable nonequilibrium states. The analytical results are compared with numerical simulations.

PhysicsPolynomialStatistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesGeneral Physics and AstronomyNoise intensityNon-equilibrium thermodynamicsStatistical and Nonlinear PhysicsFunction (mathematics)Nonlinear dynamical systemsnumerical simulationsBrownian motion modelStatistical physicsCondensed Matter - Statistical MechanicsMathematical PhysicsNoise (radio)
researchProduct

Interactions and structures in polydisperse suspensions of charged spherical colloids

2018

Colloidal suspensions are found a bit everywhere around us, in construction materials,in cosmetics, in food, in biology. They are composed of nanometric or micrometric particlesdispersed in a gas, a liquid or sometimes a solid.This thesis is about colloidal suspensions in ionic solutions, where colloids bear anelectric charge, for example silica particles in an aqueous solution of sodium chloride,at a basic pH. The colloids, here approximated by spheres, can vary significantly in size,which can have an important effect on the behavior of these systems.This study aims at improving the understanding of these charged colloidal suspensionsby theoretical models solved by numerical simulations.of…

[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryDispersions colloidalesNumerical simulationsColloidal dispersionsCoarse-GrainingSimulations numériquesMulti-Échelle
researchProduct

Searching for Chymase Inhibitors among Chamomile Compounds Using a Computational-Based Approach

2018

Inhibitors of chymase have good potential to provide a novel therapeutic approach for the treatment of cardiovascular diseases. We used a computational approach based on pharmacophore modeling, docking, and molecular dynamics simulations to evaluate the potential ability of 13 natural compounds from chamomile extracts to bind chymase enzyme. The results indicated that some chamomile compounds can bind to the active site of human chymase. In particular, chlorogenic acid had a predicted binding energy comparable or even better than that of some known chymase inhibitors, interacted stably with key amino acids in the chymase active site, and appeared to be more selective for chymase than other …

0301 basic medicineProteaseschlorogenic acidlcsh:QR1-502030204 cardiovascular system & hematologyMolecular Dynamics SimulationCrystallography X-RayLigandsBiochemistrylcsh:MicrobiologyArticleSerine03 medical and health sciences0302 clinical medicineChymasesCatalytic DomainHumanschamomilecardiovascular diseases; chamomile; chlorogenic acid; chymase; docking; matricin; molecular dynamics simulations; pharmacophore; Biochemistry; Molecular BiologyEnzyme InhibitorsMolecular Biologychymasechemistry.chemical_classificationBinding SitesbiologypharmacophoreChymaseActive sitemolecular dynamics simulationsmatricinAmino acidcardiovascular diseasesMolecular Docking Simulation030104 developmental biologyEnzymechemistryBiochemistryDocking (molecular)dockingbiology.proteinPharmacophoreBiomolecules
researchProduct

Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign

2007

A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany) as part of the "Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere" (EFEU) project. The combustion conditions were monitored with concomitant CO<sub>2</sub> and CO measurements. The mass scattering efficiencies of 8.9±0.2 m<sup>2</sup> g<sup&gt…

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphereoptical propertiesSmokeAtmospheric Science[SDU.OCEAN] Sciences of the Universe [physics]/Ocean AtmosphereChemistryCombustionAtmospheric scienceslcsh:QC1-999AerosolDilutionlcsh:ChemistryAtmospherelcsh:QD1-999complex refractive indexEnvironmental chemistryAtmospheric chemistryParticle-size distributionBiomass burning aerosolMie simulationsAbsorption (electromagnetic radiation)number size distributionlcsh:PhysicsAtmospheric Chemistry and Physics
researchProduct